Last edited by Yozshuramar
Thursday, July 16, 2020 | History

4 edition of Etale cohomology and the Weil conjecture found in the catalog.

Etale cohomology and the Weil conjecture

Freitag, Eberhard.

Etale cohomology and the Weil conjecture

by Freitag, Eberhard.

  • 256 Want to read
  • 27 Currently reading

Published by Springer-Verlag in Berlin, New York .
Written in English


Edition Notes

Work arose from a conference on l-adic cohomology held in Oberwolfach.

StatementEberhard Freitag Reinhardt Kiehl with an historical introduction by J.A. Dieudonné.
SeriesErgebnisse der Mathematik und ihrer Grenzgebiete -- Bd. 13
ContributionsKiehl, Reinhardt., Dieudonné, Jean, 1906-
ID Numbers
Open LibraryOL21340484M
ISBN 100387121757

I. The Essentials of Etale Cohomology Theory.- II. Rationality of Weil?-Functions.- III. The Monodromy Theory of Lefschetz Pencils.- IV. Deligne's Proof of the Weil Conjecture.- Appendices.- A I. The Fundamental Group.- A II. Derived Categories.- A III. Descent. Series Title: Ergebnisse der Mathematik und ihrer Grenzgebiete, Folge 3, Bd. Etale Cohomology and the Weil Conjecture (Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics (13)) Eberhard Freitag. Paperback. $ Next. Customers who bought this item also bought. Page 1 of 1 Start over Page 1 of 1.

more closely mirrored the properties of singular cohomology on manifolds, with the explicit aim of proving the Weil conjectures. 4. Etale cohomology In , Dwork managed to prove the rationality and functional equation us-ing p-adic analysis rather than cohomology, but the Riemann hypothesis seemed as far out of reach as before. Etale cohomology of constructible sheaves is used to set up $ l $- adic cohomology and to prove the Weil conjecture on the zeta-function. References [1] A. Grothendieck, "The cohomology theory of abstract algebraic varieties", Proc. Internat. Math.

Bradley Brock has books on Goodreads, and is currently reading Etale Cohomology and the Weil Conjecture by Eberhard Freitag, War and Peace by Leo Tol. Free 2-day shipping. Buy Ergebnisse Der Mathematik Und Ihrer Grenzgebiete. 3. Folge /: Etale Cohomology and the Weil Conjecture (Paperback) at


Share this book
You might also like
The Phillips Academy Prize Examinations in Mathematics

The Phillips Academy Prize Examinations in Mathematics

World architecture

World architecture

Motherwell district report

Motherwell district report

David Robertson.

David Robertson.

Calamity Jane of the western trails

Calamity Jane of the western trails

10 credit internship with the Department of Ecology, Nooksack Initiative Office report

10 credit internship with the Department of Ecology, Nooksack Initiative Office report

Electric lighting

Electric lighting

Amiga Rom Kernel Reference Manual

Amiga Rom Kernel Reference Manual

Modified level II streambed-scour analysis for structure I-164-7-6973 crossing Bluegrass Creek in Vanderburgh County, Indiana

Modified level II streambed-scour analysis for structure I-164-7-6973 crossing Bluegrass Creek in Vanderburgh County, Indiana

Growth of 31-year-old baldcypress plantation

Growth of 31-year-old baldcypress plantation

Episodes with Gurdjieff

Episodes with Gurdjieff

Alcohol and the fetus

Alcohol and the fetus

In the murky waters of Vatican II

In the murky waters of Vatican II

Etale cohomology and the Weil conjecture by Freitag, Eberhard. Download PDF EPUB FB2

Etale Cohomology and the Weil Conjecture. Authors (view affiliations) Eberhard Freitag We intended especially to provide a complete introduction to etale and l-adic cohomology theory including the monodromy theory of Lefschetz pencils.

With the kind permission of Professor J. Dieudonne we have included in the book that. Etale Cohomology and the Weil Conjecture (Ergebnisse der Mathematik und ihrer Grenzgebiete.

Folge / A Series of Modern Surveys in Mathematics (13)) Softcover reprint of the original 1st ed. Edition by Eberhard Freitag (Author) › Visit Amazon's Eberhard Freitag Page. Find all the books, read about the author, and more. Cited by: Etale Cohomology and the Weil Conjecture.

Authors: Freitag, Eberhard, Kiehl, Reinhardt Free Preview. Buy this book eB89 With the kind permission of Professor J. Dieudonne we have included in the book that finally resulted his excellent notes on the history of the Weil conjectures, as a second introduction.

Our original notes were. Etale cohomology and the Weil conjecture E. Freitag, Rinhardt Kiehl This book is concerned with one of the most important developments in algebraic geometry during the last decades.

Etale Cohomology and the Weil Conjecture Volume 13 of Ergebnisse der Mathematik und ihrer Grenzgebiete. Folge / A Series of Modern Surveys in Mathematics: Authors: Eberhard Freitag, Reinhardt Kiehl: Translated by: Betty S.

Waterhouse, William C. Waterhouse: Contributor: J.A. Dieudonne: Edition: illustrated: Publisher: Springer Science. Etale Cohomology and the Weil Conjecture Eberhard Freitag, Reinhardt Kiehl, Betty S.

Waterhouse, William C. Waterhouse, J.A. Dieudonne Some years ago a conference on l-adic cohomology in Oberwolfach was held with the aim of reaching an understanding of Deligne's proof of the Weil.

Etale Cohomology and the Weil Conjecture 作者: Eberhard Freitag / Reinhardt Kiehl 出版社: Springer 译者: William C. Waterhouse 出版年: 页数: 定价: USD 装帧:. Then understand etale topology and definition of $\ell$-adic cohomology groups and how the Frobenius morphism happens to act on them.

Technical machinery underlying $\ell$-adic cohomology. I haven't studied this myself very well, but Milne's book seems to be a standard reference. Read Deligne's Weil I. The goal of the seminar is to prove the Riemann hypothesis part of the Weil conjectures.

Today, we will formulate the statements and talk about how they can be interpreted using etale cohomology. Weil conjectures We will use notation from Deligne and our reference [KW01].

Notation X 0 will denote a variety over F q, and X:= X 0 F q F. cohomology of Goresky and MacPherson has an ´etale analogue, which provides a Poincar e´ duality theorem for singular varieties. Etale cohomology has been brilliantly successful in explaining Weil’s observation.

Algebraic Topology We briefly review the origins of the theory on which ´etale cohomology. We shall not be able to avoid using spectral sequences — see pp – of my book on Etale Cohomology for a brief summary of spectral sequences and Chapter 5 of Weibel’s and Kiehl, R., Etale Cohomology and the Weil Conjecture, Springer, Milne, J., Etale Cohomology, Princeton U.P.

(cited as EC). Tamme, Introduction to Etale. Number theory learning seminar The seminar will meet Wednesdays pm in Room H. This year's seminar will focus on etale cohomology, the goal being to understand Laumon's proof of the main theorem of Deligne's Weil II paper that gave a powerful and vast generalization of the Riemann Hypothesis over finite fields.

Etale Cohomology and the Weil Conjecture Some years ago a conference on l-adic cohomology in Oberwolfach was held with the aim of reaching an understanding of Deligne's proof of the Weil conjec tures. With the kind permission of Professor J.

Dieudonne we have included in the book that finally resulted his excellent notes on the history. Besides the original Deligne's article I and article II and Dwork's result on rationality, there is the book Freitag/Kiehl - "Étale Cohomology and the Weil Conjecture" and the online pdf by Milne - "Lectures on Étale Cohomology".

The first title is out of stock and hard to. Etale Cohomology and the Weil Conjecture 英文书摘要. This book is concerned with one of the most important developments in algebraic geometry during the last decades.

In AndrA(c) Weil formulated his famous conjectures about the numbers of solutions of diophantine equations in finite fields. He himself proved his conjectures by means.

Grothendieck () and his collaborators established the rationality conjecture, the functional equation and the link to Betti numbers by using the properties of étale cohomology, a new cohomology theory developed by Grothendieck and Artin for attacking the Weil conjectures, as outlined in Grothendieck ().

Of the four conjectures the. New Edition available hereEtale cohomology is an important branch in arithmetic geometry. This book covers the main materials in SGA 1, SGA 4, SGA 4 1/2 and SGA 5 on etale cohomology theory, which includes decent theory, etale fundamental groups, Galois cohomology, etale cohomology, derived categories, base change theorems, duality, and l-adic cohomology.

The prerequisites for reading this. Cite this chapter as: Freitag E., Kiehl R. () Deligne’s Proof of the Weil Conjecture. In: Etale Cohomology and the Weil Conjecture. Ergebnisse der Mathematik und ihrer Grenzgebiete (3. with Reinhardt Kiehl: Etale Cohomology and the Weil Conjecture, Springer Verlag,ISBN Siegelsche Modulfunktionen.

Springer-Verlag, BerlinGrundlehren der mathematischen Wissenschaften vol.ISBN   In the rest of this paper, we will rewrite the right-hand side of the formula in Corollary using Weil-étale cohomology of S with coefficients in A.

We begin with the definition of Weil-étale cohomology and need some preparations. Review of Weil-étale cohomology. We recall the definition of Weil-étale cohomology following. Lectures on Etale Cohomology. This book explains the following topics: Etale Morphisms, Etale Fundamental Group, The Local Ring for the Etale Topology, Sheaves for the Etale Topology, Direct and Inverse Images of Sheaves, Cohomology: Definition and the Basic Properties, Cohomology of Curves, Cohomological Dimension, Purity; the Gysin Sequence, The Proper Base Change Theorem, Cohomology .Etale Cohomology Princeton Mathematical Ser Princeton University Press, +xiii pages, ISBN An exposition of étale cohomology assuming only a knowledge of basic scheme theory.

In print. List price USD ( price was $=$ in dollars). PUP, An online bookstore, Review.Etale cohomology and the Weil conjecture. [Eberhard Freitag; Reinhardt Kiehl] Home. WorldCat Home About WorldCat Help. Search. Search for Library Items Search for Lists Search for Book: All Authors / Contributors: Eberhard Freitag; Reinhardt Kiehl.

Find more information about: ISBN: